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Implementation of Human Cognitive Bias on Neural Network and Its
Application to Breast Cancer Diagnosis

Hidetaka TANIGUCHI ∗, Hiroshi SATO ∗, and Tomohiro SHIRAKAWA ∗

Abstract : The neural network is one of the most successful machine learning models. However, the neural network
often requires large amounts of well-balanced training data to ensure prediction accuracy. Meanwhile, human learners
can generalize a new concept from even a small quantity of biased examples, simultaneously enlarging knowledge with
an increase in experience. As a possible key factor in the ability to generalize, human beings have cognitive biases
that effectively support concept acquisition. In this study, to narrow the gap between human and machine learning, we
have implemented human cognitive biases into a neural network in an attempt to imitate human learning to enhance
performance. Our model, named loosely symmetric neural network, has shown superior performance in a breast cancer
classification task in comparison with other representative machine learning methods.
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1. Introduction

The neural network (NN) is one of the most popular machine
learning methods and has been studied extensively over the last
few decades [1]. Many types of NN have already been devel-
oped, such as the convolutional NN [2], the recurrent NN [3],
the auto-encoder [4], and the deep learning model [1]. These
NNs have shown superior performance across a variety of tasks,
such as breast cancer classification, using diagnosis data [5]
and image data [6]. However, these NN-based models often
require a large amount of well-balanced training data to ensure
the prediction accuracy [7]. If the number of training data is
insufficient or the distribution of the data is imbalanced, the
performance of the NN will decrease [8]. NN-based models,
which usually need a well-balanced large database, thus tend to
be costly in terms of time and money.

Meanwhile, human beings can generalize a new concept
from a small quantity of biased examples [9],[10]. For in-
stance, human children can quickly learn a new animal from
just one example, while machine learning requires uncount-
able amounts of data [11]. Also, human beings can quickly
develop knowledge as the examples and experiences increase in
number [12], whereas machine learning often faces an under-
fitting/overfitting problem in such a situation [13]. As exem-
plified above, there is still a gap between human learning and
machine learning. To close that gap, a number of studies have
attempted to develop a more human-like machine learning sys-
tem, inspired by cognitive science and human nature [14]–[16].
A study by Shinohara et al. [17] demonstrated that two well-
known cognitive biases–the symmetric bias [17],[18] and the
mutually exclusive bias [19],[20] –could be effectively em-
ployed in machine learning tasks. The symmetric bias promotes
a tendency of inferring “if q then p” after convincing that “if p
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then q.” For example, if p represents “the weather was rainy”
and q represents “the ground was wet,” the symmetric bias in-
fers “if the ground was wet (q), then the weather was rainy a
while ago (p)” from “if the weather was rainy (p), then the
ground was wet (q)” [21]. Although this kind of inference can
lead to systematic errors [17], this tendency in human nature
is considered to contribute to faster decision making [21]. The
mutually exclusive bias is another tendency in which “if ¬p
then ¬q” is inferred after convincing that “if p then q,” where
¬p and ¬q are the negations of p and q. For example, sup-
pose that a mother tells her son, “if you don’t clean up your
room, then you will not be allowed to play.” In this sentence,
p is interpreted as “not cleaning up a room” and q is inter-
preted as “not being allowed to play.” In this case, her son
may also interpret the sentence as “If I clean up my room, then
my mom will allow me to play” (i.e., ¬p→¬q), and may thus
clean up his room [21]. In this inference, “if you don’t clean
up your room, then you will not be allowed to play” should be
interpreted as “punishment”; however, the son seems to misun-
derstand it as a “reward.” Although their conversation involves
logical errors, the communication between the mother and her
son would seem to be successful because he would clean up
his room and then be able to play. Shinohara et al. expected
that including both of these biases in a model would yield more
human-like inferences [17], as these two biases can lead to in-
correct logic but yield faster decision-making. The resulting
loosely symmetric (LS) model considers both symmetric and
mutually exclusive biases. In cognitive experiments, the LS
model has shown to exhibit a very high correlation with human
inference [21].

In this study, to apply this human-like nature to machine
learning tasks, we have implemented the LS model within an
NN breast cancer classifier to learn from a small quantity of bi-
ased samples. Our model is an attempt to realize more flexible
Hebbian learning [22] from the standpoint of cognitive biases.
In Hebbian learning, when the firing of one neuron repeatedly
or persistently fires another, the synaptic knob of the axon on
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the first neuron is developed, or the axon enlarges existing syn-
tactic knobs of connected neurons. Also, if two neurons do not
fire for a certain period, the synaptic knob between them is re-
duced. The Hebbian learning rules are therefore interpreted as
(i) “if neuron x fires neuron y, then the synaptic knob of neuron
x connected to neuron y is developed and enlarged” and also
(ii) “if neuron x does not fire neuron y, then the syntactic knob
of neuron x connected to neuron y is reduced.” The form of
symmetric bias corresponds to (i), and the mutually exclusive
bias corresponds to (ii). For example, if p represents “neuron
x sent a strong signal” and q represents “neuron y was acti-
vated,” symmetric bias leads to “if neuron y was activated (q),
then neuron x sent a strong signal (p)” from “if neuron x sent
a strong signal (p), then neuron y was activated (q).” Also,
mutually exclusive bias imparts the tendency that “if neuron x
did not send a strong signal, then neuron y was not activated.”
Although the Hebbian learning rules are implemented in gen-
eral neural networks, the forms of the above cognitive biases
more faithfully duplicate the Hebbian forms. As subsequently
described, these two biases are implemented in our neural net-
work model with a weight-update rule based on the cognitive
mechanism. Namely, the symmetric bias and the mutually ex-
clusive bias imitate the forms of the Hebbian learning rules,
and we, therefore, expect that they would contribute to faster
decision making. We compared the performance of our model
with the performance of five machine learning models includ-
ing standard NN, support vector machine (SVM) [23], random
forests (RF) [24], NN with dropout [25], and NN with batch
normalization (BN) [26]. We selected these machine learning
models for the following reasons: (i) NN is the base model for
our proposed model, and we have attempted to investigate char-
acteristic differences between them; (ii) SVM and RF are the
most powerful machine learning models, and we have regarded
these models as standard benchmarks of machine learning mod-
els; (iii) as subsequently described, our model has a high degree
of similarity with the dropout algorithm, which contributes to
enhancing the performance of the NN base model by adding
noise to the neural network, especially when the quantity of
training data is limited; (iv) BN is one of the most powerful
techniques to improve the performance of NN and has a simi-
larity to our model to some extent: these two models add pro-
cess to layer inputs during training. The focus of this paper
is to improve the accuracy of the machine learning model es-
pecially when a small number of biased examples were given.
Our model showed the best performance among the six ma-
chine learning models mentioned above for the breast cancer
classification task.

The breast cancer classification task is studied for a long
time in the field of machine learning using a variety of
datasets [5],[6]. In this task, machine learning models often
require a large amount of well-balanced training data to as-
sure the prediction accuracy [27]. However, medical datasets,
such as that of breast cancer, give some difficulties in obtaining
large amounts of well-balanced data due to privacy issues [28].
We, therefore, considered there is a strong need for the machine
learning model which can deal such a situation.

One of the most famous solutions for this problem is
dropout [25], which omits each of the nodes with a certain prob-
ability. Dropout can prevent the overfitting/underfitting prob-
lem on NN [29] and has shown superior performance in a va-

riety of tasks [25],[29]. Furthermore, the model can deal with
the lack of data when the lack is moderate. However, dropout
algorithm would be less effective when extremely few training
examples were given [29]. There is still a question on whether
dropout is a robust solution for the medical data classification
or not.

Our method attempts to solve these problems. The pur-
poses of our model are to improve classification accuracy with
a small number of biased training examples and to create a new
NN framework which utilizes human cognitive biases. Previ-
ous studies such as [17],[30],[31] showed the effectiveness of
human cognitive biases for machine learning tasks, especially
when the small and biased number of examples were given to
the model. In our model, NN with LS can omit nodes and “re-
vive” them according to the status of the network. This frame-
work can provide more flexible representations of the network.
In this paper, we utilized the LS model to enhance the perfor-
mance of NN in the classification task using the small quantity
of biased training data.

2. Materials and Methods

2.1 Neural Network

NN is a learning method based on the perceptron [32] and
inspired by neuroscience [7]. NN has three kinds of layers,
called input, hidden, and output layers. Each layer comprises
one or more nodes. The number of nodes in a hidden layer can
be variable [7]. Considering an m-layered feed-forward NN,
scoring uses a logistic function as in (1)-(2), where xk

i is the sum
of input to i-th node in layer k, wk−1,k

j,i is a connective weight to

i-th node in the layer k from j-th node in k − 1 layer, and yk
i is

output of the unit.

yk
i =

1

1 + e−xk
i

, (1)

xk
i =

n∑

j

wk−1,k
j,i yk−1

j . (2)

The distance between the output of NN ym
i and true value ti is

calculated as in (3) using the sum-of-squares error function E,
where δmi is the difference between the output of NN and the
true value.

E =
1
2

∑

i

(ym
i − ti)

2 =
1
2

(δmi )2. (3)

The aim of the backpropagation is to update the weights wk−1,k
j,i

so as to decrease δmi . The change in weight Δwk−1,k
j,i is as in (4),

where α is a learning rate.

Δwk−1,k
j,i = −αδki yk

i (1 − yk
i )yk−1

j . (4)

2.2 Dropout Neural Network

Dropout is a computationally inexpensive but powerful reg-
ularization method for NN [25],[29]. The dropout algo-
rithm randomly omits each of the hidden nodes with a cer-
tain probability on each presentation of each training exam-
ple [25],[29],[33],[34]. The dropped nodes do not participate in
forward learning or backpropagation. NN with dropout is thus
trained by a different network architecture on each presentation
of each training example [34]. In a recent study, dropout was
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assumed to add noise to NN [34], thus preventing too much co-
adaptation, especially when there were only a limited number
of training data units [25],[33],[35].

2.3 Batch Normalization

BN is a technique for accelerating the training of NN [26].
BN standardizes the distribution of the input of each layer, as
in (5):

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]
. (5)

Here, x(k) is the layer inputs, E[x(k)] and
√

Var[x(k)] are the
mean and the standard deviation over mini-batch [36]. One of
the purposes of BN is to avoid internal covariate shift; the phe-
nomenon of the changes of parameters during training affects
the distribution of network activations [26].

2.4 Loosely Symmetric Neural Network

We implemented the LS model into an NN framework, thus
developing loosely symmetric neural network (LSNN). Table 1
shows the 2×2 contingency table of the LS model, where a, b,
c, and d are the frequencies of co-occurrence of p, q, ¬p, and
¬q [17].

Table 1 Contingency table of the LS model.

q ¬q
p a b
¬p c d

The LS model estimates the strength of the relations between
p, q, ¬p, and ¬q as defined in equations (6)-(9):

LS (q|p) =
a + bd

b+d

a + b + ac
a+c +

bd
b+d

, (6)

LS (¬q|p) =
b + ac

a+c

a + b + ac
a+c +

bd
b+d

, (7)

LS (p|q) =
a + cd

c+d

a + c + ab
a+b +

cd
c+d

, (8)

LS (¬q|¬p) =
d + ac

a+c

c + d + ac
a+c +

bd
b+d

. (9)

The LS model is a modification of conditional probability,
which includes additional terms ac/(a + c) and bd/(b + d). If
these two terms equal zero, LS becomes equivalent to the con-
ditional probability. If b = c is satisfied, (6) and (7) are equiv-
alent, and the LS model satisfies symmetric bias completely.
Also, if a = d and b = c are simultaneously satisfied, (6),
(8), and (9) are equivalent, and the LS model acquires com-
plete symmetric and mutually exclusive biases. Figure 1 shows
the relation between LS (q|p) and LS (p|q) as well as the relation
between LS (q|p) and LS (¬q|¬p). The data points in the figures
are randomly generated by uniformly setting a, b, c, and d from
[0, 1]. If LS (q|p) = LS (p|q) holds, the symmetric bias is com-
plete, and the graph in Fig. 1 (a) would show a positive and pro-
portional relationship. Also, if LS (q|p) = LS (¬q|¬p) holds, the
mutually exclusive bias is complete and the graph in Fig. 1 (b)
would show a positive and proportional relationship. If there is

Fig. 1 (a) Relation between LS (q|p) and LS (p|q), and (b) relation be-
tween LS (q|p) and LS (¬q|¬p).

no bias, there is no correlation between LS (q|p) and LS (p|q), or
between LS (q|p) and LS (¬q|¬p), and therefore, Figs. 1 (a) and
1 (b) would be random plots. The distributions of the plots in
Fig. 1 show an intermediate shape; a hybrid of proportional and
random distribution. If the model always represents a complete
symmetric bias or mutually exclusive bias, this result would
indicate that the model is too strongly illogical and does not
show similarity to human inference. Namely, the LS model
exists in an intermediate state between complete bias and no
bias. The LS model exhibits the intermediate states of sym-
metry and mutual exclusivity as shown in Fig. 1. In cognitive
experiments, the LS model showed a higher correlation to hu-
man inference [21] in comparison with other cognitive models,
such as the ΔP [37] model which represents the relationship
between response alternatives and outcomes, and dual factor
heuristics (DH) models [38]. The reason that the LS model
showed such high correlation to human inference is still un-
der investigation. However, a number of studies have shown
its effectiveness in machine learning tasks, such as spam clas-
sification and the N-armed bandit problem [17],[30],[31]. In
[30],[31], the authors contributed to enhancing the prediction
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accuracy of naive Bayes (NB) using human cognitive biases.
The machine learning model named loosely symmetric naive
Bayes (LSNB) showed superior classification performances in
comparison with conventional machine learning models, using
a small and biased number of examples. In order to introduce
this method into NN framework, we utilized the LS model to
adjust the node values. LSNB and LSNN have some similar-
ity; LSNB calculates its likelihood using the LS model, instead
of the product of conditional probability as of NB. Similarly,
LSNN adjusts the node values which can be interpreted as the
probability distributions that range from 0 to 1 using the sig-
moid function [39].

Our LSNN model adjusts the value of each node using LS
during feed-forward learning and backpropagation. Our ap-
proach is inspired by studies in neuroscience, which imply the
existence of the symmetric and mutually exclusive character-
istics at the neuron level [40],[41]. For example, a neuronal
characteristic of symmetry gives such a tendency that “if neu-
ron y activated, then neuron x activated.” from “if neuron x
activated, then neuron y activated” [40]. Also, a neuronal char-
acteristic of mutual exclusivity gives such a tendency that “if
neuron x did not activate, then neuron y did not activate” [41].
Our LSNN approach is an attempt to reproduce these physio-
logical characteristics in an NN framework from the standpoint
of cognitive science. To reproduce the neuronal characteristics
of symmetry and mutual exclusivity within the framework of
NN, we have implemented a new architecture of NN using LS,
which has a high correlation with results in physiology, neuro-
science, and human inference [17],[38]. In order to apply this
framework to NN, our LSNN is formulated as in (10)-(14):

a = yk−1
i , (10)

b = 1 − yk−1
i , (11)

c = 1 − xk
j , (12)

d = xk
j , (13)

LS (yk−1
i ) =

a + bd
b+d

a + b + ac
a+c +

bd
b+d

. (14)

Here, a is the value of node yk−1
i , which is in the (k − 1)th

layer. Therefore, a reflects the degree to which a node has been
activated. In addition, b reflects the degree to which a node has
not been activated. In (12), (13), c and d reflect the degrees
to which node xk

j has not been activated or activated, respec-
tively. As in (14), LSNN estimates the causal relationship be-
tween nodes yk−1

i and xk
j . If node yk−1

i sends a signal to node xk
j ,

then xk
j is activated, and LS (yk−1

i ) outputs a greater value than

yk−1
i because LSNN predicts that yk−1

i has contributed to activat-
ing xk

j and that therefore yk−1
i should be enhanced. Meanwhile,

if a node yk−1
i sends a signal to a node xk

j , then xk
j is not ac-

tivated, and LS (yk−1
i ) outputs a lower value than yk−1

i because
yk−1

i is considered to be a weak neuron. Also, the change in
weight is given as in (15), where ΔLS wk−1,k

i j is the change of

the weight between node yk−1
i and node xk

j , which is calculated
using LS:

ΔLS wk−1,k
i, j = −αδkjyk

j(1 − yk
j)LS (yk−1

j ). (15)

The procedure of the LSNN is as follows: (i) Calculate xk
j us-

ing feed-forward learning; (ii) adjust the value of nodes in the

(k − 1)th layer; (iii) update weights using adjusted node values
as in (15). Furthermore, LSNN has a different characteristic
that is not involved in either standard NN or NN with dropout.
In standard NN and NN with dropout, as shown in (4), if node
yk−1

i takes a value of 0, its weight wk−1,k
i j is not updated. Mean-

while, if xk
j is activated, LS (yk−1

i ) outputs a value that is greater
than 0. Namely, LSNN can update the connection weights be-
tween xk

j and yk−1
i even when yk−1

i takes a value of 0. A sig-
nificant difference between NN with dropout and LSNN is that
the former randomly drops units from a layer, whereas the lat-
ter drops units according to the state of the network and also
revives dropped units. We assume that this implementation of
dropping and reviving nodes more precisely duplicates Heb-
bian learning, and thus contributes to faster decision making in
comparison with standard backpropagation.

2.5 Experimental Settings

We used the Wisconsin Breast Cancer dataset [42] for the
breast cancer classification task. The goal of this task was to
classify data into one of two classes, benign and malignant.
The Wisconsin Breast Cancer dataset consisted of 699 sam-
ples of data, comprising 458 benign data and 241 malignant
data. The percentage of each class was benign = 65.5% and
malignant = 34.5%. The number of features was 10. The fea-
tures included “Sample code ID” and 9 other features, with val-
ues ranging from 1 to 10. The details of the Wisconsin Breast
Cancer dataset are given in Table 2. Before the experiment, we
eliminated “Sample code ID” from the feature vector and re-
moved 17 samples that had missing data. Therefore, the total
number of training data points was reduced to 682. We con-
ducted four experiments with a different number of benign and
malignant data in the learning phase, using six classification
models in the task of breast cancer classification: NN, SVM,
RF, NN with dropout (Drop-NN), NN with BN (NN-BN), and
LSNN. For NN, Drop-NN, NN-BN, and LSNN, we used a
three-layered NN with a sigmoid function, which is commonly
used for binary classification. The number of nodes in a hid-
den layer was 30. For Drop-NN, the dropout rate was 50% for
hidden units. For NN-BN, we set the mini-batch size as 32 for
Exp. 1, 3 for Exp. 2, and 16 for Exp. 3 and Exp. 4, respec-
tively. These numbers were chosen after trials of using 3, 6,
10, 16, 32, and 64. Training was done for 100 epochs for NN,
Drop-NN, NN-BN, and LSNN. The SVM classifier was used
with Gaussian kernel, which is common for binary classifica-
tion. The SVM has the cost parameter that is used to deter-
mine the decision boundary. Furthermore, the model uses ra-
dial basis fuction (RBF) that takes gamma parameter. We set
the cost parameter as 0.1 and the gamma parameter as 0.1. RF
used 5 trees; this value showed the best performances after tri-
als of using 3, 5, 10, and 30 trees. The parameters of each
model were decided after some trials and the best values were
chosen. In the following experiments, we used only biased
and/or small numbers of training data. The numbers of train-
ing data in each experiment were as follows: benign = 150 and
malignant = 150 for Exp. 1, benign = 6 and malignant = 6
for Exp. 2, benign = 150 and malignant = 6 for Exp. 3, and
benign = 6 and malignant = 150 for Exp. 4, respectively. In
Exp. 1, we used a relatively larger quantity of well-balanced
data, while the number of data in Exp. 2 was severely limited.
In Exp. 3, the data proportions were highly imbalanced as a re-
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Table 2 Characteristic values of Wisconsin Breast Cancer dataset, ob-
tained from [42], where STD represents standard deviation.

Attribute

Features
Mean STD

Mean

(benign)

STD

(benign)

Mean

(malignant)

STD

(malignant)

Clump

Thickness
4.44 2.82 2.96 1.67 7.19 2.44

Uniformity

of cell size
3.15 3.07 1.30 0.86 6.58 2.72

Uniformity

of cell

shape

3.22 2.99 1.41 0.96 6.56 2.57

Marginal

adhesion
2.83 2.86 1.37 0.92 5.59 3.20

Single

epithelial

cell size

3.23 2.22 2.11 0.88 5.33 2.44

Bare

nuclei
3.22 2.15 2.41 1.22 4.71 2.66

Bland

chromatin
3.45 2.45 2.08 1.06 5.97 2.28

Normal

nucleoli
2.87 3.05 1.26 0.95 5.86 3.35

Mitoses 1.60 1.73 1.07 0.51 2.60 2.56

sult of a very small number of malignant samples, and in Exp. 4,
the number of benign samples was similarly limited. The num-
ber of test data was 100, with benign = 50 and malignant = 50.
Scores were calculated from averages over 50 trials.

3. Results

The results of Exp. 1 to 4 are shown in Tables 3 to 6, re-
spectively. In Exp. 1, we used a relatively higher quantity of
training data in comparison with the other three experiments.
In this experiment, LSNN, Drop-NN, NN-BN, SVM, NN, and
RF showed better performance, in that order. Here, NN-BN
and SVM had the same F-measure value. LSNN showed the
best performance with almost perfect malignant classification
accuracy; its error rate in benign classification was only approx-
imately 5%; as a result, it showed the best F-measure value.
Drop-NN had the best benign classification accuracy and rel-
atively higher malignant classification accuracy, showing the
second-highest F-measure. Similarly to Drop-NN, NN-BN had
higher benign and malignant classification accuracies, and its
F-measure value was the third-highest. Although NN had very
high benign classification accuracy, with less than a 5% error
rate, its malignant classification accuracy and the F-measure
value were lower in comparison with the other three NN-based
models mentioned above. Also, SVM showed similar results
to LSNN with very high performances on both benign and ma-
lignant classifications, and its F-measure value was the third-
highest, having the same rank as NN-BN. RF had relatively
good scores on both classifications: approximately 0.88 benign
classification accuracy, approximately 0.77 malignant classi-
fication accuracy, and approximately 0.81 F-measure value.
However, in comparison with the other models, RF showed the
lowest performance in terms of classification accuracy and F-
measure value. In summary, in Exp. 1, LSNN had the best
performance in terms of the F-measure values.

In Exp. 2, only a very small number of training data was
used to train the machine learning models (benign = 6 and
malignant = 6). LSNN had the best malignant classification
accuracy, with approximately a 5% error rate in benign classifi-
cation. Also, in this experiment, LSNN showed similar results
to those in Exp. 1, despite the quantity of training data having
been dramatically decreased. Namely, LSNN successfully op-
timized proper connection weights from a limited quantity of
training data and showed the best performance in terms of the

F-measure values. Drop-NN had similar benign classification
accuracy to that of LSNN. However, the malignant classifica-
tion accuracy of the former decreased by approximately 0.15
points from its score in Exp. 1 and was much lower than the
latter. The F-measure value of Drop-NN in Exp. 2 thus de-
creased in comparison with its score in Exp. 1. NN-BN had
similar tendencies and results to Drop-NN, and its malignant
classification accuracy was decreased by approximately 0.15
points from Exp. 1, while its benign classification was rela-
tively high. Namely, Drop-NN and NN-BN were affected by
the restricted number of training data in a similar way. NN
also showed similar results to Drop-NN; however, its benign
classification accuracy was lower than that of Drop-NN. In the
Exp. 2, NN decreased its benign classification accuracy by 0.04,
its malignant classification accuracy by 0.1, and its F-measure
value by 0.08, in comparison with its results in Exp. 1. The
difference in performance between Drop-NN and NN seemed
to have been reduced in comparison with that in Exp. 1 as a
result of the dropout algorithm having become less effective.
SVM showed a different tendency from the other five machine
learning models, increasing its benign accuracy performance
from Exp. 1, and showed the best benign classification accuracy
in this experiment. However, its malignant classification accu-
racy dramatically decreased from that in Exp. 1. Namely, SVM
showed a relatively greater difference in performance between
its benign and malignant classification accuracies as a result of
changes in the quantity of training data. RF decreased its be-
nign and malignant classification accuracies and its F-measure
value from Exp. 1 and showed the worst performance. The per-
formance decrements of SVM and RF were greater than those
of the NN-base models as SVM decreased its malignant classi-
fication accuracy, approximately by 0.2 points from Exp. 1 to
Exp. 2. Also, RF substantially decreased its benign and malig-
nant classification accuracies in comparison with the NN-base
models. The benign classification accuracy of RF decreased
by approximately 0.09 points, from Exp. 1 to Exp. 2. Further-
more, the malignant classification accuracy of RF decreased by
approximately 0.21 points, which was almost at the same rate
as SVM. Meanwhile, standard NN, Drop-NN, NN-BN, and
LSNN did not show such a wide decrease from Exp. 1 to Exp.
2. These four NN-base models were considered to be toler-
ant of skewed quantities of data. Namely, the NN-base models
showed stable performance in comparison with SVM and RF.

In Exp. 3, all machine learning models except LSNN showed
higher benign classification performance in comparison with
the other three experiments. Although the benign classification
accuracy of LSNN slightly decreased from Exp. 1 and 2, in Exp.
3, LSNN showed the best malignant classification performance
and F-measure value. Also, Drop-NN did not show a substan-
tial performance decrease from Exp. 1, and showed similar re-
sults in comparison with its scores in Exp. 2. Although NN-BN
showed the highest benign classification accuracy, its malignant
classification accuracy was decreased by 0.64 points in compar-
ison with its scores in Exp. 1, and 0.50 points from Exp. 2. The
F-measure score of NN-BN was thus dramatically decreased
and was the fourth highest. NN greatly increased its benign
classification accuracy in comparison with the results of the two
previous experiments described, while greatly decreasing its
malignant classification performance and its F-measure value.
Namely, NN and NN-BN showed strong sensitivity to imbal-
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anced sample data distributions. NN and NN-BN increased its
benign classification accuracy while simultaneously decreasing
its malignant classification accuracy and the F-measure value.
SVM also decreased its malignant classification performance
from Exp. 1 and 2, while its benign classification accuracy was
nearly perfect and the highest. However, the F-measure value
of SVM decreased in comparison with Exp. 1 and 2. Similarly
to NN, NN-BN, and SVM, RF dramatically increased its benign
classification performance from Exp. 1 and 2, whereas its ma-
lignant classification performance simultaneously became very
poor. RF, therefore, decreased its F-measure value, showing
the worst performance among the machine learning models. In
Exp. 3, in comparison with Exp. 1 and 2, conventional ma-
chine learning algorithms NN, SVM, and RF increased their
benign classification accuracy and decreased their malignant
classification accuracy at the same time. Also, NN-BN showed
strong sensitivity to imbalanced data distributions. The malig-
nant classification accuracy of NN-BN became poor in this ex-
periment, and its F-measure score was rather decreased from
the conventional NN. Although Drop-NN did not decrease its
benign classification accuracy in Exp. 3, its malignant classi-
fication accuracy decreased from Exp. 1, while remaining ap-
proximately the same as that in Exp. 2. Meanwhile, such de-
creases in malignant classification accuracy were not observed
in LSNN. Although LSNN decreased its benign classification
accuracy slightly, it showed more stable learning from imbal-
anced sample data distributions than the other machine learning
models and demonstrated the best performance in terms of the
F-measure value.

In Exp. 4, conversely to performance in Exp. 3, most models
showed superior results in malignant classification, and their
scores in benign classification accuracy were lower than those
in the other three experiments. The relative proportions for dif-
ferent types of data between Exp. 3 and 4 were symmetrically
opposite. Therefore, most machine learning models showed al-
most symmetrically opposite scores for corresponding classi-
fication accuracies between Exp. 3 and 4, except LSNN. Al-
though LSNN decreased its benign classification performance
by approximately 0.06 points, this score decrease was much
lower than that of the other machine learning models, as subse-
quently described. Also, LSNN showed nearly perfect malig-
nant classification accuracy at the same time. The F-measure
value of LSNN was still high in Exp. 4 and did not decrease
substantially in comparison with Exp. 1 to 3. Meanwhile, the
benign classification performance of Drop-NN decreased, sur-
prisingly, in comparison with its value in the other three ex-
periments, and the performance became inferior relative to the
benign classification performance and F-measure value of stan-
dard NN. Drop-NN, therefore, showed some sensitivity to bi-
ased sample data distributions that was not observed in the other
three experiments. The F-measure value of Drop-NN thus de-
creased dramatically from its value in Exp. 1 to 3. NN-BN
had perfect malignant classification accuracy, while its benign
classification accuracy was relatively low. The benign classifi-
cation accuracy of NN-BN was the worst among the four NN-
base models. Meanwhile, in Exp. 4, NN showed higher clas-
sification accuracies and a higher F-measure value in compar-
ison with Drop-NN and NN-BN; NN did not decrease its be-
nign classification performance from Exp. 1 to 3 to the extent
of Drop-NN and NN-BN.

Table 3 Results of experiment 1. Classification accuracies for the benign
and malignant samples and F-measure values are indicated.

Malignant Benign F-measure
NN 0.928 0.952 0.939

SVM 0.994 0.929 0.963
RF 0.767 0.882 0.814

Drop-NN 0.979 0.953 0.966
NN-BN 0.955 0.972 0.963
LSNN 0.995 0.941 0.969

Table 4 Results of experiment 2. Classification accuracies for the benign
and malignant samples and F-measure values are indicated.

Malignant Benign F-measure
NN 0.823 0.912 0.861

SVM 0.797 0.970 0.872
RF 0.556 0.793 0.631

Drop-NN 0.820 0.947 0.876
NN-BN 0.808 0.960 0.868
LSNN 0.977 0.946 0.962

Table 5 Results of experiment 3. Classification accuracies for the benign
and malignant samples and F-measure values are indicated.

Malignant Benign F-measure
NN 0.363 0.993 0.530

SVM 0.527 0.994 0.688
RF 0.170 0.962 0.281

Drop-NN 0.820 0.949 0.877
NN-BN 0.312 0.998 0.459
LSNN 0.997 0.901 0.951

Table 6 Results of experiment 4. Classification accuracies for the benign
and malignant samples and F-measure values are indicated.

Malignant Benign F-measure
NN 0.998 0.827 0.919

SVM 1.0 0.473 0.791
RF 0.949 0.316 0.721

Drop-NN 0.996 0.678 0.859
NN-BN 1.0 0.511 0.813
LSNN 0.996 0.886 0.944

NN thus showed a higher F-measure value in comparison
with its score in Exp. 2 and 3. SVM showed perfect malignant
classification accuracy. At the same time, its benign classifica-
tion accuracy greatly decreased in comparison with its scores
in the other three experiments. SVM consistently demonstrated
a benign classification accuracy of greater than 0.9 throughout
Exp. 1 to 3. However, its benign classification accuracy per-
formance suddenly became poor in Exp. 4. RF showed ten-
dencies similar to those of SVM, NN-BN, and Drop-NN; RF
greatly improved its malignant classification accuracy and dra-
matically decreased its benign classification accuracy perfor-
mance in comparison with the other three experiments. Con-
versely to the results in Exp. 3, NN, NN-BN, SVM, and RF
sacrificed benign classification accuracy to ensure malignant
classification performance. This tendency was also observed
for Drop-NN, despite its having demonstrated stable learning
in Exp. 3. Therefore, as observed in Exp. 3 and 4, NN, SVM,
RF, NN-BN, and Drop-NN decreased their stable learning per-
formance in comparison with Exp. 1 and 2. Meanwhile, LSNN
was the only NN-base model that did not exhibit such a ten-
dency and overcame its sensitivity to small biased sample data
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distributions. Across all four experiments, LSNN did not ex-
hibit sensitivity to small biased examples, and its performance
was the best of any of the machine learning models in terms of
the F-measure value.

4. Discussion

We conducted four experiments using the most represen-
tative machine learning models–NN, SVM, RF, NN-BN, and
Drop-NN–and compared their performance with our LSNN in
a breast cancer classification task. In Exp. 1, we used a rel-
atively greater quantity of well-balanced sample data in the
training phase for the machine learning models. Exp. 1 was
conducted to confirm the performance of the machine learning
models when a greater quantity of well-balanced sample data
had been given to them. As expected, all models showed good
performance in this experiment, demonstrating, in particular,
the highest performance of LSNN.

In Exp. 2, we used only a very limited number of training
examples. Obviously, the performance of the machine learn-
ing models decreased in comparison with that shown in Exp. 1,
except for that of LSNN. The performance decreases of NN,
SVM, RF, NN-BN, and Drop-NN were undoubtedly triggered
by the lack of data. However, LSNN, NN-BN, and Drop-NN
still exhibited high performance with a relatively small number
of data. The reason is that we assume, for a low quantity of data
in a dataset, smaller neural network size is more advantageous
for concept acquisition. Drop-NN drops its nodes randomly
and makes shrinkage on its network; thus, the algorithm starts
off with an advantage in adaptation for the lack of data. NN-
BN showed a similar tendency to Drop-NN, and its ability of
normalization contributed to stable learning, as implied in [26].
The study in [36] mentioned that BN is not suited when the
size of mini-batch is small. However, in this experiment, NN-
BN showed certain performance with only three mini-batches.
NN-BN with a small number of mini-batch is considered to be
suitable for a small number of training data in our experiment.
LSNN has a mechanism for adjustment of its network size;
namely, nodes in LSNN are dropped and revived according to
the learning data. This may have created a stronger tolerance to
lack of data for LSNN.

In Exp. 3, we used highly imbalanced training examples.
NN, SVM, and RF showed differences in performance in this
experiment, with very high benign classification accuracy per-
formance and very low malignant classification accuracy per-
formance. Such conventional machine learning methods as NN,
SVM, and RF often require large amounts of well-balanced
training data to ensure prediction accuracy. Therefore, if the
training data are highly imbalanced, conventional models fail
to learn properly; e.g., one reason is that these models may mis-
takenly adjust to noisy distributions. In actuality, in our experi-
ment, NN, SVM, and RF showed high performances in benign
classification accuracy. We assume that this is a result of over-
fitting [13], and these three models may have had difficulties in
finding a correct decision boundary, resulting in biased pseudo-
negative (pseudo-benign) decisions. Also, NN-BN showed a
similar tendency to these conventional machine learning mod-
els. We considered the BN technique was less effective under
imbalanced data distributions. The performance of BN would
be strongly dependent on the activation of layer inputs in the
same mini-batch [43]. We considered NN-BN could not nor-

malize layer inputs because of the unstable transitions of E[x(k)]
and Var[x(k)] since the distribution of layer inputs was too bi-
ased. We considered this phenomenon triggered too much in-
ternal covariate shift [26]. Meanwhile, Drop-NN and LSNN
did not exhibit such performance differences between malig-
nant and benign classification accuracies and showing higher
accuracies; however, for Drop-NN, there was a slight decrease
in malignant classification accuracy in comparison with Exp.
1. Drop-NN creates a different neural network structure at each
turn of the learning phase by dropping a number of nodes ran-
domly, and the resulting acquired concept is given by the aver-
age of learning by multiple network structures. This property
of Drop-NN prevents excessive co-adaptation on noisy distribu-
tions; in fact, Drop-NN demonstrated superior results in com-
parison with the conventional models: NN, SVM, and RF. The
performance of LSNN can be explained similarly. LSNN ad-
justs its network structure according to the data distribution,
and this may impart greater tolerance to the imbalance in the
dataset than that of Drop-NN.

In Exp. 4, the data proportion was set to be symmetrically
opposite to that of Exp. 3. As shown in Tables 5 and 6, all ma-
chine learning models showed almost symmetrically opposite
scores between Exp. 3 and 4. Namely, malignant classifica-
tion accuracies increased, and benign classification accuracies,
conversely, decreased. Although the drop-NN was proposed to
prevent the data imbalance problem in NN, it also showed a per-
formance decrease in benign classification accuracy. As shown
in Table 6, the performance of Drop-NN decreased in compari-
son with the performance of NN. In other words, Drop-NN had
strong data sensitivity to imbalanced sample distributions. We
predicted that the effectiveness of the dropout algorithm would
be limited in some cases. The studies in [25],[34] showed that
the dropout algorithm worked successfully in the tasks of hand-
written number classification, image-classification, and email
categorization. These tasks often use over hundreds of features,
and the dropout algorithm is considered to be useful for tasks
that address a large number of features. However, in this study,
we used only a small number of features for the breast cancer
classification task. Furthermore, as shown in Table 2, the vari-
ation in values in data was larger in the malignant data, caus-
ing the malignant features to be more unclear. Also, although
dropout is said to prevent the overfitting problem of NN with
a small training set [33],[35], Goodfellow et al. mentioned the
dropout algorithm would be less effective when extremely few
training examples had been given [29]. Another study men-
tioned dropout would be less effective when a sufficient num-
ber of data had been given [44]. Therefore, its adaptation is
rather difficult to perform under certain conditions, such as the
experimental settings in Exp. 4. The performance of NN-BN
was also decreased in comparison with the performance of NN.
The benign classification accuracy of NN-BN decreased more
than 0.4 points, and this score was much lower than the benign
classification accuracies of NN, Drop-NN, and LSNN. Simi-
larly to the results of Exp. 3, NN-BN was strongly affected by
imbalanced data distributions, and it might cause too much in-
ternal covariate shift [26]. NN-BN, therefore, showed strong
sensitivity to imbalanced data, and its performance was rather
decreased from the conventional NN. Meanwhile, our LSNN
did not show such sensitivity and showed the best results across
all experiments. LSNN showed similar characteristics to LSNB



SICE JCMSI, Vol. 12, No. 2, March 2019 63

which has strong durability to small and biased data [30],[31].
These two models utilized the LS model to adjust the represen-
tation of feature space and showed superior performances using
the small and imbalanced examples.

As a result, LSNN overcame the sensitivity to the data-
imbalance observed in NN, NN-BN, and Drop-NN by using
human cognitive biases. As in Exp. 3 and 4, this is also a result
of the adjustment to the neural network structure. Furthermore,
LS is a mechanism that learns what is “not A” by observing the
presence of “A,” and this explains the reason that LSNN is toler-
ant of the imbalance in data. In conclusion, LSNN, which is an
LS-implemented neural network, showed the best performance
in all of the experiments, showing tolerance and adaptability to
a small, imbalanced dataset.

5. Conclusion
In this study, we implemented human cognitive biases into

NN, attempting to imitate human learning to enhance the per-
formance of NN. We conducted four types of experiments us-
ing different numbers of training data: a relatively large num-
ber of well-balanced training examples in Exp. 1, a restricted
number of training examples in Exp. 2, and a biased number
of training examples in Exp. 3 and 4. In Exp. 1, LSNN, Drop-
NN, NN-BN, SVM, NN, and RF showed high performance, in
that order. In Exp. 2, NN, SVM, RF, NN-BN, and Drop-NN
decreased their scores in comparison with their results in Exp.
1, whereas LSNN did not show a substantial performance de-
crease. Also, the performance reductions of NN, SVM, RF,
NN-BN, and Drop-NN worsened in Exp. 3 and 4. Meanwhile,
our LSNN model did not show much performance reductions
as a result of biased sample data distributions, and maintained
a high performance, using human cognitive biases. Namely,
our model seemed to simulate human learning with respect to
some content and overcame the weaknesses of machine learn-
ing models that have the sensitivity to small, imbalanced train-
ing data. In future research, we will further investigate the
relationship between NN, human cognitive bias, and Hebbian
learning and how these factors interact in the learning process
in order to realize human-level concept learning.
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